## SCHEDULE IV-LAUNCH MISSION (KSC-1)

## STATUS TASK 1 LAUNCH OPERATIONS

SA-9 16 FEB 65 SA-8 25 MAY 65 SA-10 30 JULY 65 AS-201 26 FEB 66 SA-203 5 JULY 66 AS-202 25 AUG 66

204 - IN PRE-LAUNCH PREPARATION 206 - IN PRE-LAUNCH PREPARATION

TASK 10 \$11-MODIFICATION OF LAUNCH COMPLEXES 34 AND 37B LC 34 COMPLETED 17 NOV 65 LC 37B COMPLETED 17 MAY 66

CHART 30

we can take a core vehicle and have the flexibility of going from a 40,000-pound load in orbit to 50,000 pounds by putting on two strapons. By putting on four we can get 78,000 pounds. By enlarging the core tanks and using the seven segment job we can go up to 106,000 pounds, and we can use the kind of vehicle needed to put up the kind of payload that develops over the next few years. Consequently, I think that this is a very worthwhile thing for us to get into as soon as we can

Dr. von Braun. I would like to reinforce a statement here. We made a study on logistic supply of a permanent space station and it just is not so that you need to resupply the station only once a year. You might say why don't we fly up only once a year and use a big Saturn V. There are certain areas, for example, in the scientific area where a man has a job to do up there which may take only 3 months for collection of all the scientific data that he wants. Then the man wants to come home and evaluate his data on the ground. Now if there is only one airplane going every year to bring the man home we have the guy up there for three-fourths of the year without getting much out of it. On the other hand, our study also shows that every now and then there comes a bigger payload along that you don't want to break down into smaller modules, because you burden the operation with an additional assembly operation in orbit, which again is costly, so it is