1968 NASA AUTHORIZATION

1966 TECHNICAL PROBLEM & SOLUTION SUMMARY

PROBLEM

ZERO-G WATER GLYCOL EVAPORATOR OPERATIONS

CONTAMINATION OF ECU DISTRIBUTION PLATE

TITANIUM-N204 INCOMPATIBILITY

SERVICE PROPULSION SUBSYSTEM HELIUM INGESTION (SP-009 MISSION)

ASTRO-SEXTANT DOOR MECHANISM

POTENTIAL RECONTACT OF APEX COVER AFTER JETTISONING

SERVICE MODULE REACTION CONTROL SYSTEM PROPELLANT CAPACITY & GAGING ACCURACY SOLUTION

REDESIGN OF WICKS, WETNESS SENSOR & CONTROLS (BLOCK II)

REDESIGN OF DISTRIBUTION PLATE & FILTER (BLOCK 11A)

GREEN N2O4 (ADDITION OF 0.4 TO 0.8% NITRIC OXIDE)

REDESIGN OF STANDPIPE

PASSIVE ASTRO-SEXTANT THERMAL PROTECTION

ADDITION OF SEPARATION CHUTE IN APEX (BL I) DUAL POSITIVE EXPULSION (BL II)

FOUR-ON-DOOR QUAD CONCEPT PVT GAGING CONCEPT

SLIDE 39. 1966 TECHNICAL PROBLEM AND SOLUTION SUMMARY

some of these are not major in themselves, but caused some real scrambling on our part to catch back and not have an impact on the schedule. For example, we concluded with the NASA, after a lot of soul searching, that the water glycol evaporator in our environmental control system couldn't be proven to work at zero G. It would work at one G in a laboratory, and it would work upside down, but you couldn't prove it would work at zero G. So after a lot of analytical work and some studies of the possibilities of it failing in zero G, we changed to a design which would work under any conditions of operation.

We had a contamination problem in the ECU distribution plate and had to redesign the distribution plate with larger holes; this is

within the ECU.
Mr. CABELL. ECU?

Mr. Myers. Actually, it is the environmental control unit of the

overall cabin conditioning system of the spacecraft.

We had a problem with titanium and nitrous oxide, an incompatibility that caused a stress corrosion, and by adding four-tenths to eight-tenths of 1 percent of nitric oxide to the oxidizer, we got away from that problem and conclusively proved that it was a stress corrosion problem due to the interaction of very pure oxidizers.

rosion problem due to the interaction of very pure oxidizers.

Mr. Winn. Dale, what shows up? You're talking about stress cor-

rosion?

Mr. Myers. This particular one was a very interesting story. We were running a life test back at the Bell Aircraft Co., who supplied these tanks, and we popped 20 tanks in a period of 2 days—a sudden rash of failures of tanks. We couldn't understand it because we had