
preliminary postflight operations (slide 65). The vehicle would be returned to our facility here in Downey, where inspection and tests would begin with the recovered vehicle. Certain subsystems would be removed, the heat shield could be removed, if necessary, and these would be returned to the subcontractors for refurbishment and/or replacement of individual elements. The vehicle would be reassembled, using the same primary structure, and after checkout would be reshipped. The renovated command module would be shipped, with a new service module, a new launch escape system, and a new adapter,

back to the Cape for a second flight.

There is one other version we have studied at NASA's direction in which we go through a similar process, but after we inspect the recovered vehicle, we remove the heat shield and subsystems. We would purge and store these subsystems and the heat shields for possible use as spares for later flights. The stripped-down inner vehicle minus the subsystems would be assembled with a new support rack and with an air lock that attaches to the side. This would provide what we call an RCML, renovated command module lab (slide 66), that could be carried in the adapter section on the same support mounts which carry the lunar module on a normal lunar mission. Once in orbit, the CSM, transposes and docks to the RCML. We would thus have another type of small space station that fits certain applications well, for example, operations at synchronous orbit altitude where payload becomes fairly critical.

RCM CONCEPT

SLIDE 65. RCM CONCEPT