The second deployment, which I call "posture B," is a heavier defense against a Soviet attack. With the same area coverage, it provides a higher-density Sprint defense for twice the number of cities.

Shown on the figure 2 are the components and the costs (which, if past experience is any guide, may be understated by 50 to 100 percent for the systems as a whole) ² of posture A and posture B.

FIGURE 2

Investment cost
[In billions]

	Posture A	Posture B
Radacs: MAR		
TACMAR PAR MSR		
Investment cost	\$6.5	\$12.6
Sprint Investment cost	2.4	4.8
DOD investment costAEC investment cost	8.9 1.0	17. 4 2. 0
Total investment cost (excluding R. & D.)	9.9	19. 4
Number of cities with terminal deficiencies	.38 X	$^{.72}_{2\mathrm{X}}$

The multifunction array radar (MAR) is a very powerful phased-array radar which can perform all the defense functions involved in engaging a large, sophisticated attack: central control and battle management, long-range search, acquisition of the target, discrimination of warheads from decoys or "spoofing" devices, precision tracking of the target, and control of the defense interceptor missiles.

The TACMAR radar is a scaled down, slightly less complex and less powerful version of the MAR, which can perform all the basic defense functions in a smaller, less sophisticated attack.

The perimeter acquisition radar (PAR) is a phased-array radar required for the very long-range search and acquisition functions involved in area defense. To achieve the full potential of the extended range Spartan, the target must be picked up at much greater distances in order to compute its trajectory before the Spartan is fired.

The missile site radar (MSR) is a much smaller, phased-array radar

The missile site radar (MSR) is a much smaller, phased-array radar needed to control the Sprint and Spartan interceptor missiles during an engagement. It can also perform the functions of the TACMAR but on a considerably reduced scale. Actually, a number of different sizes are being studied. This "modular" approach will permit us to tailor the capacity of the radar to the particular needs of each defended area.

The Spartan is a three-stage missile with a nuclear warhead capable of intercepting incoming objects at relatively long range above the atmosphere.

Even before the systems became operational, pressures would mount for their expansion at a cost of still additional billions. The unprotected, or relatively unprotected, areas of the United States would claim that their tax dollars were being diverted to protect New York and Washington while they were left naked. And critics would point out that our strategic offensive force is premised on a much larger Soviet threat (the "possible," not the "probable" threat); they would conclude that the same principles should be applied to our strategic defensive forces. For these and other reasons, I believe that, once started, an ABM system deployed with the objective of protecting the United States against the Soviet Union would require an expenditure on the order of \$40 billion over a 10-year period.