matters, to make specific recommendations and initiate schemes of cooperation, International exchange of such schemes is also desirable.

(c) European scientists should be taught to appreciate the importance of the industrial sector of society. To maximize collaboration between the universities and industry, opportunities should be sought and devices worked out to promote

greater intimacy between them in enterprises of mutual benefit.

(d) To promote further interchanges and improved collaboration between industry and the world of education, professors should be granted one or two sabbatical years, during which they have the opportunity to participate in industry as research workers or consultants or are employed part-time in industrial laboratories. Conversely, businessmen could be invited to deliver lectures at universities.

6. Government

(a) To encourage the greater mobility of men and information, improve the management of this mobility, and improve the partnership between the State and industry and education in the pursuit of certain challenging national aims, European governments should:

(1) promote greater mobility of men between government, industry and the universities:

(2) develop clearly defined machinery at the national level for deciding priorities of a science and technology policy in order to be able to participate

effectively in a European science policy.

(b) Computer technology should be dealt with on a European basis as soon as possible. Until appropriate arrangements are worked out, it is necessary to tackle it first of all on a national level, and subsequently try to broaden the field and develop teaching in the "soft-ware" fields and computer utilization.

C. THE EUROPEAN LEVEL

1. Education

(a) Young engineers leaving their college or university should be encouraged to follow training courses in industry in countries other than their own. (Such courses should last one or two years; they should not compromise the future career of those concerned, but could provide a good means of effecting the transatlantic transfer of technologies. Even if a certain amount of emgiration resulted from such a scheme, the advantages arising from the return to Europe of engineers with their training completed in this way would largely compensate for such loss.)

(b) A few European strong points of research should be developed on an experimental basis choosing new, interdisciplinary subjects. (As an example,

computer soft-ware was suggested.)

(c) A European Institute of Science and Technology should be established. (The organization of a European postgraduate course with an international faculty and students in all subjects concerned with technical progress, ranging from scientific subjects to their industrial application and including the basic sciences, economics, sociology and psychology, could be not only a considerable stimulant for the various European educational systems but also a rich source of engineers trained for the requirements of our society. The lengthy discussion of this proposal surveyed the financial problems involved, the necessity for a suitable site, the recognition of its diplomas by the various countries concerned, and the necessity for close cooperation at government and private enterprise level, both among European countries and between them and the United States).

2. Industry

(a) European industry should seek to prepare and promote a program for the Governments of Europe to eventually computerize the economic and administrative activities of the Continent with due consideration for the hardware, the software, the communications and the education of personnel needed for the efficient execution of the program.

(b) Multinational companies should form themselves into an active group to make available generally the benefits of their experience in organizing business

across national frontiers.