(15) Cochran WG, Cox G: Experimental Designs, ed 2. New York, John Wiley & Sons, 1957

(16) A Million Random Digits With 100,000 Normal Deviates, Rand Corpora-

tion. Glencoe, Ill, The Free Press, 1955.

(17) Cornfield J: The University Group Diabetes Program: A further statistical analysis of the mortality findings. JAMA 217:1676-1687, 1971.

(18) Paasikivi J: Long-term tolbutamide treatment after myocardial infarction. Acta Med Scand., suppl 507, 1970, pp 1–82.

(19) Feldman R, Crawford D, Elashoff R, et al: Progress report on the prophylactic use of oral hypoglycemic drugs in asymptomatic diabetes: Neurovascular studies. Adv Metab Disord 2 (suppl 2):557-567, 1973.
(20) Tzagournis M, Reynertson R: Mortality from coronary heart disease dur-

ing phenformin therapy. Ann Intern Med 76:587-592, 1972.
(21) Feinstein AR: Clinical biostatistics: VIII. An analytic appraisal of the University Group Diabetes Program (UGDP) study. Clin Pharmacol 12:167-191,

(22) Schor S: The University Group Diabetes Program: A statistician looks at the mortality results. JAMA 217:1671–1675, 1971.

(23) Seltzer HS: A summary of criticisms of the findings and conclusions of the

University Group Diabetes Program (UGDP). Diabetes 21:976-979, 1972.

(24) O'Sullivan JB, Mahan CM, D'Agostino RB: Critique of the UGDP mortality analyses. New York, Academic Press, to be published.

- (25) Prout TE, Knatterud GL, Meinert CL, et al: The UDGP controversy: Clinical trials versus clinical impressions. *Diabetes* 21:1035-1040, 1972.
- (26) Cox DR: Analysis of Binary Data. London, Methuen & Co, Ltd, 1970. (27) Cox DR: Regression models and life tables (with discussion). J R Statistical Soc Br 34:187-220, 1972.

(28) Kalbfleisch JD, Prentice RL: Marginal likelihoods based on Cox's re-

gression and life model. Biometrika 60:267-277, 1973.
(29) Breslow N, Haug C: Sequential comparison of exponential survival curves. J Am Statistical Assoc 339:691-697, 1972.

APPENDIX A

Use of the logistic model

The logistic model has been recognized as being very useful for studies in which there are only two outcomes, for example, death or survival (-6) In this use of the model it is assumed that the probability of death, P, depends on m independent variables, X_1 , X_2 , * * *, X_p , according to the relation

$$P = \frac{1}{1 + c^{-A}}$$

where

$$A = b_0 + b_1 X_1 + b_2 X_2 \dots + b_m X_m$$

On each subject in the UGDP trial, the data available were the m independent variables and an outcome variable that was given the value 0 or 1 according to whether the patient survived or died The multiple regression equation was fitted to relate the probability of death to the independent variables A maximum likelihood procedure was used to find estimates of the regression coefficients

 b_0, b_1, \dots bp
Groups of people such as those receiving a treatment or those from a particular clinic were incorporated into the model by the inclusion of an indicator variable that, for a given individual, took the value 1 if the individual was in that group, and 0 otherwise In order to avoid redundancy, there must be one fewer variable for clinics than there were clinics, and so for other sets of categories To allow for the varying lengths of follow-up, potential length of follow-up (ie, the length of time between entry into the study and the end of the study) was entered as a covariable in the regression.

As a test of the various covariables in the logit regression, the likelihood ratio χ^2 was computed. The likelihood ratio χ^2 can be computed for a set of parameters, β , by comparison with a set of parameters β^* to which, under the null hypothesis,