for carefully in all cases of hemolytic anemia, whether exposure to drugs has occurred or not. A hypersensitive person may respond to minimal concentrations of a chemical; for example, children have developed hemolytic anemia after exposure to aniline laundry marks 17 or to naphthalene in moth-protected clothing. 18 Drugs marked by an asterisk in the table have been associated with the production of oxidative hemolytic anemia. 15

Other biochemical abnormalities of blood cells, which render them hypersensitive to specific drugs and chemicals, will undoubtedly be found. Since these abnormalities would be primarily genetic, it is important to obtain a complete family history and to inquire about consanguinity, which often may be the first clue to a genetic mechanism.19 Because of this interest, the report form distributed by the Study Group on Blood Dyscrasias contains a space for checking the presence or absence of consanguinity.

A quantitative difference in the response to a drug may also be of pathogenetic importance in the development of many blood dyscrasias. In a number of drugs, the difference between therapeutic and toxic levels is quite small, and severe cellular suppression or destruction may be caused by a minor metabolic deviation from the normal. In order to relate the development of a blood dyscrasia to this mechanism, excessive doses of a drug given to normal individuals should cause the same type of toxic reaction which is observed when regular doses are given to

hypersensitive individuals

Results of recent studies strongly suggest that chloramphenicol-induced bone marrow suppression represents an accentuated normal response to the drug. Toxicity studies in animals, with the possible exception of monkeys,²⁰ have failed to reveal that chloramphenicol has marrow-suppressive properties. However, studies in man have shown that large doses given for prolonged periods of time will cause bone marrow suppression and maturation arrest. Krakoff and co-workers 21 and Ozer and co-workers 22 gave large doses of chloramphenicol to 5 people, and all 5 developed pancytopenia and bone marrow suppression. In addition, studies by Saidi and co-workers 22 and by Rubin and co-workers 24 have shown that mild reversible bone marrow suppression is a common complication of chloramphenical therapy. Results of in vitro studies of normal bone marrow have shown also that chloramphenicol in high concentrations inhibits desoxyribose nucleic acid (DNA)²⁵ and heme synthesis ²⁶ in a manner which could explain the lack of cellular proliferation and the impariment of iron utilization observed in vivo. The metabolic handling of chloramphenicol has been studied in a few patients after they had recovered from chloramphenicolinduced pancytopenia, and, in these patients, the drug was found to be detoxified and excreted in a perfectly normal manner." Consequently, it appears that the pancytopenia which occassionally is found in patients treated with chloramphenicol may represent an exaggerated response to the suppressive action of chloramphenicol on bone marrow. A few cases have been reported in which the action of chloramphenicol on the blood cells has been suggestive of an antigen-antibody reaction, but, in the great majority of cases, there is no evidence that this is caused by an immunologic mechanism or by a genetic abnormality in the handling of or in the response of this drug.

[&]quot;Graubarth, J., et al.: Dye Poisoning in Nursery: Review of 17 Cases, JAMA 128: 1155-1157 (Aug. 18) 1945.

18 Dawson, J. P.; Thayer, W. W.; and Desforges, J. F.: Acute Hemolytic Anemia in Newborn Infant due to Naphthalene Poisoning: Report of 2 Cases, with Investigations into Mechanism of Disease, Blood 13: 1113-1125 (Dec.) 1958.

10 Motulsky, A. G.: Drug Reactions, Enzymes and Biochemical Genetics, JAMA 165: 835-837 (Oct. 19) 1957.

20 Hrenoff, A. K., and Anderson, H. H.: Chronic Toxicity of Chloramphenicol to Bone Marrow of Macaques, Med Exp 4: 183-190, 1961.

21 Krakoff, I. H.; Karnofsky, D. A.; and Burchenal, J. H.: Effects of Large Doses of Chloramphenicol on Human Subjects, New Engl J Med. 253: 7-10 (July 7) 1955.

22 Ozer, F. L.; Truax, W. E.; and Levine, W. C.: Erythroid Hypoplasia Associated with Chloramphenicol Therapy, Blood 16: 997-1001 (July) 1960.

23 Saidi, P.; Wallerstein, R. O.; and Aggeler, P. M.: Effects of Chloramphenicol on Erythropoiesis, J Lab Clin Med 57: 247-256 (Feb.) 1961.

24 Rubin, D., et al.: Changes in Iron Metabolism in Early Chloramphenicol Toxicity, J Clin Invest 37: 1286-1292 (Sept.) 1958.

25 Yunis, A. A., and Harrington, W. J.: Patterns of Inhibition by Chloramphenicol of Nucleic Acid Synthesis in Human Bone Marrow and Leukemic Cells, J Lab Clin Med 56: 831-838 (Dec.) 1960.

25 Ersley, A. J., and Lossifides, I. A.: In Vitro Action of Chloramphenicol and Chloramphenicol-Analogues on Metabolism of Human Immature Red Blood Cells, to be published.

27 Glazko, A. J.: Personal communication.