6 McCurdy, P. R.: Unpublished Observations.

7 Rosenbach, L. M.; Caviles, A. P.; and Mitus, W. J.: Chloramphenicol Toxicity; Reversible Vacuolization of Erythroid Cells, New Engl J Med 263: 724–728 (Oct. 13) 1960.

8 Core, T. E., Jr., and Akelson, S. M.: Aplastic Anemia Following Two Days of Chloramphenicol Therapy; Case Report of Fatality in Six-Year-Old Girl, J Pediat 41: 340–342 (Sept.) 1952.

9 Latta, H.: Some Cytologic Effects of Antibodies, in Mechanisms of Hypersensitivity. Edited by Shaffer, J. H., LoGrippo, G. A., and Chase, M. W., Boston: Little, Brown & Co., 1959, pp. 123–137.

10 Follette, J. H., and others: Effect of Chloramphenicol and Other Antibiotics on Leukocyte Respiration, Blood 11: 234–242 (March) 1956.

11 Yunis, A. A., and Harrington, W. J.: Patterns of Inhibition by Chloramphenicol of Nucleic Acid Synthesis in Human Bone Marrow and Leukemic Cells, J Lab Clin Med 56: 831–838 (Dec.) 1960.

12 Weiss, C. F.; Glazko, A. J.; and Weston, J. K.: Chloramphenicol in Newborn Infant: Physiologic Explanation of Its Toxicity When Given in Excessive Doses, New Engl J Med 262: 787–794 (April 21) 1960.

13 Rubin, D.; Weisberger, A. S.; Clar, D. R.: Early Detection of Drug Induced Erythropoletic Depression, J Lab Clin Med 56: 453–462 (Sept.) 1960.

19th St. and Massachusetts Ave., S.E., Washington 3, D.C.

The author is grateful to Dr. C. B. Favour for help with the manuscript and Miss Mona Gieschen, M.T., ASCP for technical assistance.

Supported in part by a grant from the Damon Runyon Memorial Fund for Cancer Research, Inc.

[From the Journal of the American Medical Association, Dec. 3, 1960, pp. 1853-1854]

CHLORAMPHENICOL—A NEW WARNING

In one month recently, I saw 4 new cases of aplastic anemia. Although they ranged in age from 3 to 63, and came from different sections of the country, they had one common denominator: chloramphenicol had been used in the recent past for minor respiratory infections. There was no history of the use of other antibiotics or potentially toxic drugs and since the anemia and the other manifestions appeared a few months after the last administration of chloramphenicol, it seemed clear that this drug was responsible for the marrow aplasia.

In our recently studied series of aplastic anemia (seen within the past 3

years) 8 of 30 had received significant amounts of chloromycetin, almost invariably for minor infections. Of the most recent 10 cases of aplastic anemia, 5 had followed therapy with chloramphenicol. The tragic thing about all these seriously ill cases, most of whom died, is that the drug need never have been

It is becoming increasingly clear that chloramphenicol, an excellent broadspectrum antibiotic, has antimetabolic effects as well—that is, it may injure the intrinsic "machinery" of certain rapidly proliferating cells, notably of the bone marrow. Thus, Rubin and associates, using radioactive techniques, demonstrated a depressant effect of chloramphenicol on erythropoiesis; this occurred in 5 of 15 subjects receiving ordinary doses and in all of 4 cases with cancer who were given unusually large doses of the drug. In another study by Saidi and Wallerstein 2 10 of 22 cases treated with chloramphenicol for various infections developed striking vacuolization of nucleated red cells in the bone marrow, associated with a maturation arrest phenomenon and marked reduction in blood reticulocytes. The possibility is present that these temporary changes could go on to complete or partially complete destruction of the bone marrow providing (a) that sufficient drug was used or (b) the patient became sensitized in some manner and was given a second course of drug therapy at another time. It is thus conceivable that both an immediate or direct effect as well as an indirect or hypersensitivity mechanism may be responsible for the marrow reactions seen.

Following the introduction of chloramphenicol in 1948 and the reports of the first cases of aplastic anemia between 1950 and 1952, many editorials and reports of special ad hoc meetings appeared. Evidently the medical profession was profoundly influenced; in any event, the sales of chloromycetin declined sharply, reaching their lowest level in 1954. This lull was short-lived. By 1958,

¹Rubin, D.; Weisberger, A. S.; Botti, R. E.; and Storaasli, J. F.: Changes in Iron Metabolism in Early Chloramphenicol Toxicity, *J Clin Invest* 37: 1286–1292 (Sept.) 1958.
²Saidi, P., and Wallerstein, R. O.: Effect of Chloramphenicol on Erythropolesis. To Be Published.