- 7. Glazko, A. J.; Wolf, L. M., and Dill, W. A.: Biochemical Studies of Chloramphenicol. I. Colorimetric Methods for the Determination of Chloramphenicol and Related Nitro Compounds, Arch. Biochem. 23:411-418 (Oct.) 1949.
- 8. Joslyn, D. A., and Galbraith, M.: A Turbimetric Method for the Assay of
- Antibiotics, J. Bact. 59:711-716 (June) 1950.

 9. Bliss, E., and Todd, H. P.: A Comparison of Eight Antibiotic Agents in Vivo and in Vitro, J. Bact. 58:61-72 (July) 1949.

 10. Weiss, C. F.: Glazko, A. J., and Weston J. K.: Physiological Disposition
- of Chloramphenicol in Newborn Infants, New England J. Med. 262:787-794 (April 21) 1960.
- 11. Glazko, A. J.; Carnes, H. E.; Kazenko, A.; Wolf, L. M., and Reutner, T. F: Succinic Acid Esters of Chloramphenicol, in Antibiotics Annual, edited by H. Welch and F. Marti-Ibáñez, New York, Medical Encyclopedia, Inc., 1958, Vol. 5,
- 12. Glazko, A. J.; Wolf, L. M.; Dill, W. A., and Bratton, A. C., Jr.: Biochemical Studies on Chloramphenicol. II. Tissue Distribution and Excretion Studies, J. Pharmacol. & Exper. Therap. 96:445–459 (Aug.) 1949.
- 13. Glazko, A. J.; Dill, W. A., and Rebstock, M. C.: Biochemical Studies on Chloramphenicol (Chrloromycetin). III. Isolation and Identification of Metabolic Products in Urine, J. Biol. Chem. 183:679-691 (April) 1950.

 14. Barnett, H. L.: Kidney Function in Young Infants, Pediatrics 5:171-179
- (Feb.) 1950.
- 15. Barnett, H. L., and Vesterdal, I.: Physiologic and Clinical Significance of Immaturity of Kidney Function in Young Infants, J. Pediat. 42:99-119 (Jan.) 1953.
- 16. McCance, R. A.: Renal Physiology in Infancy, Am. J. Med. 9:229-241
- (Aug.) 1950. 17. Kunin, C. M.; Glazko, A. J., and Finland, M.: Persistence of Antibiotics in Blood of Patients with Acute Renal Failure II. Chroramphenicol and Its Metabolic Products in the Blood of Patients with Severe Renal Disease or Hepatic Cirrhosis, J. Clin. Invest. 38:1498-1508 (Sept.) 1959.

 18. Driscoll, S. G. and Hsia, D. Y-Y.: The Development of Enzyme Systems
- During Early Infancy, Pediatrics (Supp.) 22:785-845 (Oct.) 1958.
- 19. Vest, M.: Insufficient Glucuronide Formation in the Newborn and Its Relationship to the Pathogenesis of Icterus Neonatorum, Arch. Dis. Childhood 33:473-475 (Oct.) 1958.

EDITORIAL COMMENT

This report documents the considerable variability of chloramphenicol blood levels achieved in individual prematures even when the intravenous or intramuscular route of administration is used. Observe that several less than week old infants showed signs and symptoms of toxicity while receiving doses currently recommended. Also note the frequent failure to achieve blood levels claimed to be therapeutic when the "cautious" dose is used after the first week. The suspected inability of newborns to absorb adequately the palmitate form of the drug when given by mouth is not dealt with here.

Appendix VI

[From Annals New York Academy of Sciences, 1967, pp. 488-498]

BACTERIAL MENINGITIS*

(By Paul F. Wehrle, Allen W. Mathies, John M. Leedom and Daniel Ivler, Departments of Pediatrics and Medicine, University of Southern California and the Communicable Disease Service, Los Angeles County General Hospital, Los Angeles, Calif.)

INTRODUCTION

Bacterial infections of the central nervous system still constitute serious medical emergencies, despite the availability of numerous effective antimicrobial agents. Death occurs in at least 10% of these patients, and serious sequellae are frequently seen among those who survive. In spite of the serious nature of these

^{*}Supported in part by the Hastings Foundation Fund National Institutes of Health Grant 5 TO1-AI-00275 and Contract #DA-49-193-MD2874 from the U.S. Army Research and Development Command, Office of the Surgeon General, Department of the Army.