- (13) Epstein, S. S. and H. Shafner. Chemical mutagens in the human environment. Nature 219: 385-387, 1968.
- (14) FALCONER, D. S., B. M. SLIZYNSKI, and C. AUERBACH. Genetical effects of nitrogen mustard in the house mouse. J. Genet. 51: 81-88, 1952.
- (15) Generoso, W. M. Chemical induction of dominant lethals in female mice. *Genetics* 61: 461-470, 1969.
- (16) Hertwig, P. Vererbarer semisterilitat bei Mausen nach Rontgenbestrahlung, veruracht durch reciproke Translokationen Z. Indukt, Abstamm.-U. Vererblehre 79: 1-27, 1940.
- (17) Joshi, S., E. Arnold, Y. Bishop, and S. S. Epstein. Unpublished data.
- (18) Koller, P. C. Segmental interchange in mice. Genetics 29: 247-263, 1944.
- (91) Koller, P. C., and C. Auerbach. Chromosome breakage and sterility in the mouse. *Nature* 148: 501-502, 1941.
- (20) LAVAPPA, K. S. and G. YERGANIAN. Personal communication.
- (21) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (United Nations, N.Y., 1966), p. 99.
- (22) RÖHRBORN, G. Mutagenicity tests in mice. Humangenetik 6: 345-361, 1968.
- (23) Russel, L. B. and W. L. Russel. Pathways of radiation effects in the mother and the embryo. In Cold Spring Harbor Symposia on Quantitative Biology. 19: 50-59, 1954.
- (24) SLIZYNSKI, B. M. Pachytene analysis of Snell's T(5:8) a translocation in the mouse. J. Genet. 50: 507-510, 1952.
- (25) SNELL, G. D., E. BODEMANN, and W. HOLLANDER. A translocation in the house mouse and its effect on development. J. Exp. Zool. 67: 93-104. 1934.
- (26) SNELL, G. D. and D. I. PICKEN. Abnormal development in the mouse caused by chromosome unbalance. J. Genetics 31: 213-235, 1935.

Population monitoring. Whatever the system of testing potential pesticides before they are used may be, it can never be perfect. There is always the possibility that some substance will not be revealed as mutagenic by any of the test systems employed and yet represent a mutation risk to man. An example might be a substance that is not itself mutagenic, but which is specifically converted by the human body into a substance that is strongly mutagenic. If such a compound was widely used, we could be doing great harm to our descendants and never discover this fact until the damage had already occurred. And genetic damage, as we have emphasized, is irreversible as far as is now known.

Is there any possibility of setting up a system to detect such a genetic emergency if it should occur? The task would be enormously difficult, for many reasons already mentioned. For one thing, the damage caused by mutations occurs in future general generations, not this one, so the effect would not be observed for some time. In the second place, the effect might be spread out over many generations so that an enormous total effect would still be small enough in the first generation not to be noticed. Finally, the kinds of effects produced by mutations are not unique, so if there were, for example, an increased disease or death