Table 3

Formulas for Computing the Interest-Rate Equivalent of Carrying Charges on Installment Sales or Borrowed Money

(All installments equal in amount)

Method	Formula for i or d	Rate for example
Priority ¹	$\frac{2mI}{pn(n+1)-2I}$	0.169
Constant ratio	$\frac{2mI}{(C-D)(n+1)}$.178
Direct ratio	$\frac{6mI}{[3pn(n+1)]-2I(n+2)}$.175
Residuary [‡]	$\frac{2mI}{[2(C-D)-ph](h+1)}$.1875
Simple discount or Series-of-payments	$\frac{2mI}{pn(n+1)}$.167
Simple interest	$\frac{1}{m+i} + \frac{1}{m+2i} + \frac{1}{m+3i} + \cdots + \frac{1}{m+ni} = \frac{C-D}{mp}$.181
Small loan	$a_{\overline{n} r} = \frac{C-D}{p}$.175
	All values known except r. After solving for r, then i = 12r	
Present value	Same as small-loan method except $s = (1+r)^{12}-1$.190

¹ Accurate in the typical case where amount of carrying charge I is less than the periodic payment p. A formula applicable when I is greater than p is given by Ayres in "Installment Mathematics Handbook."

² Symbol k represents the integral number of times p is contained in the cash balance C-D. In the example,

since
$$\frac{C-D}{p} = \frac{150}{20} = 7.5$$
.

As indicated in footnote 1 to table 3, one of the formulas gives a precise answer only when the finance charge amounts to less than the periodic payment.

The rates shown above can be computed by simple-discount methods if the service charge is omitted from the payments to be discounted. Solving for d in the equations given below, we find that the service charge of \$10 is deducted from both sides of each equation, thus causing aggregate payments of only \$150 to be discounted to a present value of \$140. As shown in the next section, true simple discount requires that all of the payments totaling \$160 be discounted to a present value of \$150.

Priority method	$150 = [10(1-d/12) + 10] + 20(1-2d/12) + \cdots + 20(1-8d/12)$
Constant-ratio method	$150 = [\$18.75(1-d/12)+\$1.25]+[\$18.75(1-2d/12)+\$1.25]+\cdots$
	+[\$18.75(1-8d/12)+\$1.25]
Direct-ratio method	$$150 = [$17.78(1-d/12) + $2.22] + [$18.06(1-2d/12) + $1.94] + \cdots$
	+[\$19.72(1-8d/12)+0.28]
Residuary method	$$150 = $20(1-d/12) + \cdots + $20(1-7d/12) + \cdots + [$10(1-8d/12) + $10]$