1/4-Inch Scale). Converting this to per-acre Scribner log scale gives about 440 board feet per acre per year. If this were obtained on 5,292,000 acres under management, then a cut equal to this annual growth of 2,350 million board feet could be sustained.

Technical Bulletin No. 412 entitled "Yield of Second-Growth

Western Hemlock-Sitka Spruce Stands in Southeastern Alaska" presents yield
estimates for various sites. On average sites under rotations of 100 years
such stands are estimated to grow at about 500 board feet per acre per year.

On 5,292,000 acres this would support an annual sustained yield cut of
2,646 million board feet.

Again on page 16 of "Alaska's Forest Resource," it is reported that a well-stocked 130-year-old stand of hemlock had 78 thousand board feet per acre (International 1/4-Inch). If under management similar stands could be produced in 130 years, then a sustained yield of 2,704 million board feet Scribner could be expected on the 5,292,000 acres of national forest land.

In a speech in Victoria, B. C., in 1960 the then Regional Forester of Alaska estimated that the potential capacity of Alaska's national forests was 3,360 million board feet.

It seems reasonable in view of the above information to estimate the potential sustained yield at about 2,700 million board feet.

Reaching the Potential

The best way to comprehend the future of Alaska's national forests is to place the above discussion of timber harvest on a time scale. The chart on the following page shows the historical progress of actual cut in relation to the various possible allowable cuts and projections of possible