


is carried through to the structure and perhaps the safety walk being something of a compromise on those bridges where the shoulder is not carried full width across the structure?

Mr. Prisk. This I would say is true; yes.

Mr. Constandy. Before we leave that slide, do the members of the

panel care to make any observations relative to any type of design—
Mr. Schadeberg. Why does the guardrail not have the same type of structure as you talked about, the New Jersey Turnpike that you explained yesterday, that was built in such a way that it would direct the car away from it?

Mr. Prisk. You are talking about this surface, which would come up on a parabolic shape or two inclined slopes, as against the vertical

side?

Mr. Schadeberg. And then the slanted curb.

Mr. Prisk. Yes, I understand. There is not much of that in use throughout the country. These are simply illustrative of what we found on the nine interstate projects. In fact, I can say factually that we did not find any of the New Jersey-type bridge rail and parapet designs on the nine projects.

Mr. Schadeberg. Did you say that New Jersey type was—the type that was studied—was considered to be one of the safer structures?

Mr. Prisk. Yes.

Mr. Schadeberg. Any research on this being done for rails—for guardrails?

Mr. Prisk. On bridge railing, yes.
Mr. Constandy. I believe there have been research tests conducted in California on the use of that parabolical, New Jersey type. What do we call it?

Mr. Prisk. It is a bridge railing.

Mr. Constandy. They are testing it both from the standpoint of its use as a median barrier and as a parapet on bridges.