
a vehicle going 60 miles per hour, a 4,000-pound vehicle has something over 400,000 foot pounds of kinetic energy. This vehicle can be brought to a stop in 12 feet of stopping distance with a decelerating force on the

vehicle the equivalent of 10 g.

I use the figure 10 g. You have heard aviators and pilots going into a 9-g. dive. This means the weight of their bodies is the equivalent of 9 times the weight of ours, sitting in the chair. Colonel Stapp at Holloman Air Force Base has withstood deceleration levels up to 45 g. with no serious effect, so if you can control the magnitude of the deceleration force and the stopping distance, it is possible and feasible to bring a speeding vehicle to a controlled stop at a distance of 10 feet, even as low as 6 feet; if you stop him at 6 feet at 60 miles per hour, you will have 20 g.'s on the driver, which we believe at this time to be a fairly high level.

Mr. Blatnik. It is high but it is tolerable?

Dr. Hirsch. It is tolerable, if the driver is properly restrained by seatbelts in a safe automobile that is protected from secondary collisions with the windshield, dashboard, doorknobs and this sort of thing.

