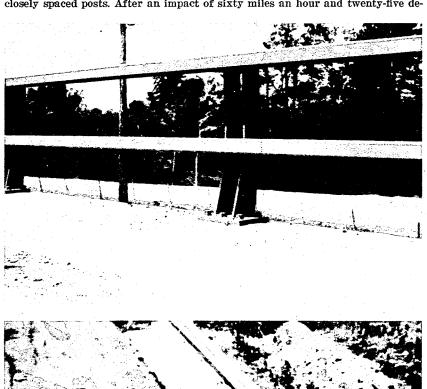
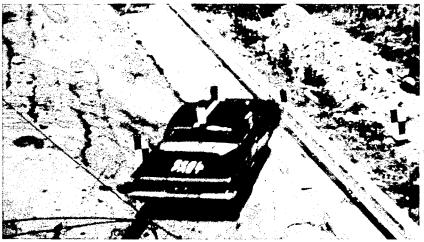
form a protective barrier at all four corners of this intersection. In this scene, the end treatment indicates the way the barrier can be swept away from the road to avoid an unnecessary hazard for the motorist.

Although a major portion of our testing was concerned with median barriers


and guiderails, we also performed twenty-two tests on bridge rails.


and guiderails, we also performed twenty-two tests on bridge rails.

The guide track, in which the car is moving at fifty-five miles an hour, is set for an impact angle of twenty-five degrees. The test barrier, one of several experimental barriers tested, was designed to meet requirements of the American Association of Highway Officials. This AASHO barrier consists of rigid rails offset on rigid posts. Redirection was satisfactory, and a deceleration of twelve gs was measured during the impact.

A transition to a recently installed AASHO bridge rail is provided by a box beam guiderail. Of interest to safety engineers is the use of additional bridge rails to enclose the open space between the two roadways to prevent an automobile from dropping on the road beneath the bridge.

In this bridge rail, a prototype box beam consists of strong rails and light, closely spaced posts. After an impact of sixty miles an hour and twenty-five de-



