is increasing all the time, that can operate at the higher altitudes, with pressurized cabins and turbocharged engines.

Mr. Dingell. Twin engines?

Mr. KAYNE. Not only twins, but we have them coming along in singles, too. We have the better known general aviation jets, Lear Jets, Jetstars, and so on.

Mr. DINGELL. Was it one of those single-engine turbine jets that was operating at 23,000 feet a while back when a National Guard plane

flew into its rear end?

Mr. KAYNE. I thought that was a single-engine Bonanza. I may

be wrong.

Mr. Dingell. Single-engine pressurized supercharged aircraft, single-engine, general aviation, up 23,000 feet, and a National Guard aircraft flew right into the rear end of it. This is a very, very good argument for positive control of aircraft at 20,000 feet.

Mr. Kayne. Sir, the fact that one airplane flew through another one, or ran over him, whichever way you want to put it, does not really make an argument for additional regulations there.

Mr. DINGELL. In all probability that accident would not have oc-

curred if both those aircraft had been under positive control.

Mr. Kayne. We have had accidents where everything there was under positive control, full traffic control, and yet the two ran into each other. In Asheville, two airplanes with ATC talking to them up to the last minute, they still ran together.

Mr. DINGELL. That was a control error, I believe, in Asheville,

where one aircraft flew into the bottom of the other one.

Mr. Karne. The way we understood it he did not fly into the bottom of it. One popped up in front of the other one. It was a matter of one at cruising level and the other one in a climb. It was a popup. He hit the bottom or the side of the fuselage. It was a matter of coming up in front of him.

Mr. Dingell. It is fair to say the more positive control you have the less area you will have where you have risk of collision because of random movements of aircraft of languages of the party have

Mr. KAYNE. Idealistically your statement I think is sound. From a practical application viewpoint in the airspace today, and this is what I tried to bring out here and Captain Ruby also brought out in response to earlier questioning, our air traffic control system only has a certain capacity to handle airplanes. The synd ton on I appear the

Mr. Dingell. When we get the new systems in leverything computerized and everything under radial, there it would most certainly be time to consider reducing the leights would it most an increase of the leights would it most an increase of the leights would it most an increase of the leights would be considered.

Mr. Rayer. Sir, right now it is taking more people in the TAA to handle the truffic after they had computers than they did before they got computers.

Mr. Drygeria. They handle it better? 101 knows a 110 and a 120 an

Mr. Kayne! That is a matter of personal opinion. I have talked to controllers. Right now they tell me that computers lose something like 15 percent of the flight plans, for example.

Mr. Divorit. I want you'to tell he why your organization opposed a really meaningful program of positive control at lower altitudes down to 18,000 feet. You have made some criticism of the FAA, but if those criticisms of the Administration are eliminated then it becomes very clear that positive control can be had. So, let us assume