APPENDIX C-Additional Airports Expected To Have Airline Jet Service by 1972—Continued

Pierre, South Dakota Presque Isle, Maine Rapid City, South Dakota Redding, California Riverside, California Riverton, Wyoming Roanoke, Virginia Rocky Mount, North Carolina Saginaw, Michigan Santa Ana, California Santa Fe, New Mexico Santa Maria, California Santa Rosa, California Saranac Lake, New York Sarasota, Florida Scotts Bluff, Nebraska Sheridan County, Wyoming

Stanton, Virginia
Sterling/Rock Falls, Illinois
Tacoma, (Industrial), Washington
Temple, Texas
Texarkana, Arkansas
Traverse City, Michigan
Tuscaloosa, Alabama
Tucson, Arizona
Twin Falls, Idaho
Walla-Walla, Washington
Watertown, New York
Watertown, South Dakota
Waycross, Georgia
Valdosta, Georgia
Vero Beach, Florida
Visalia, California
Yuma, Arizona

Mr. Tipton. One point that was subject to some discussion that I think might be useful to discuss very briefly some more is collision avoidance.

I know the entire committee is deeply intersted in it, as we are. In view of the fact that the airlines have taken the lead and carried the major burden for the development of the currently projected system, I think it might be useful to have this discussed for a few minutes,

what our progress is, what the equipment is like.

Mr. Seltzer, previously introduced, will say a few words on that. Mr. Seltzer. I should point out that for over 12 years now the airlines have been seeking a collision avoidance system. In fact, approximately a year and a half before the Grand Canyon collision the ATA invited manufacturers, through a broadcast letter, to come forth with any ideas for a noncooperative system, one which would be completely self-sufficient and capable of operating without the need for the other aircraft to be equipped. Unfortunately, I think we got virtually no response until after Grand Canyon. Thereafter, many ideas were of-

fered, but none of them came to fruition.

In approximately 1958, one of the prominent electronic manufacturers came forth with what he had as a proximity warning indicator which could grow into an eventual collision avoidance system. Had that come to pass, orders which would have amounted to \$10 million worth of equipment would have been purchased then. However, we subsequently found that the equipment was not capable of performing as anticipated and the offer was withdrawn by the manufacturer. The airlines had still been urging a self-sufficient system, but our advisers in industry, from the electronic and manufacturing industry, advised us that our sights were set far too high. If we were anxious to obtain a collision avoidance system, we might have to accept, at least for the time being, that which the current state of the art could produce; namely, a cooperative system. It was then that we said rather than get nothing we would rather have something in the form of a cooperative system. That is the reason we are on the path we are at the moment.

It is unfortunate, however, that a system such as we have in mind is necessarily high in cost. The cost is not any more to our liking than it is to general aviation. Certainly we would not expect everyone to be