APPENDIX II

THEORETICAL BENEFIT OF DEFERRED TAXATION

A. ILLUSTRATION OF EFFECT OF DIFFERENT RATES OF TAX AND TIMING OF TAX WITH RESPECT TO CONTRIBUTIONS AND INVESTMENT INCOME.

	Tax rate and timing		Annual contribution to produce \$1,200, net—	
Case	Contributions	Investment income	For 25 yr.	For 40 yr.
[(a)	18.5 percent; current	18.5 percent; current before and after age 65.	\$413.50	\$195.00
1	do	18.5 percent; current before age 65; 7½ percent, current after age 65.	400. 50	188. 50
!!(a)	do	18.5 percent; deferred after age 65.	396.00	178.00
III(a)	18.5 percent: deferred after age 65	7½ percent; deferred after age 65 18.5 percent; deferred after age 65	369.50 353.50	163.50 155.00
111	7½ percent; deferred after age 65	7½ percent; deferred after age 65	311.50	136.50

B. FORMULAS

Case I(a):

$$X(0.815)\overline{S}_{\overline{n}/(3.26\%)} = Y\overline{a}_{65}^{(4\%)}$$

where

$$Y-0.185\left(Y-\frac{X(0.815)\overline{S}_{\overline{n}/(3.26\%)}}{\ell_{65}}\right)=1,200.$$

Case I:

$$X(0.815)\overline{S}_{\overline{n}/(3.26\%)} = Y\overline{a}_{65}^{(4\%)}$$

where

$$Y-0.075\left(Y-\frac{X(0.815)\overline{S}_{\overline{n}/(3.26\%)}}{\ell_{65}}\right)=1,200.$$

(Corrected formula for case I of appendix B of Cabinet committee report.)

Case II(a):

$$X(0.815)\overline{S}_{n/(4\%)} = Y\overline{a}_{65}^{(4\%)}$$

where

$$Y-0.185\left(Y-\frac{X(0.815)(n)}{\ell_{65}}\right)=1,200.$$

Case II:

$$X(0.815)\overline{S}_{\overline{n}/(4\%)} = Y\overline{a}_{65}^{(4\%)}$$

where

$$Y-0.075\left(Y-\frac{X(0.815)(n)}{\delta_{65}}\right)=1,200.$$

(This formula for case II, as shown in the appendix B of the report, is incorrectly stated therein although it was correctly applied.)

Case III(a):

$$X\overline{S}_{n/(4\%)} = \frac{1,200}{0.815}\overline{a}_{65}^{(4\%)}$$
.