On this basis, I would say the samples with plate counts of millions or plate counts of 200 coliforms are way above the capabilities of the industry to carry out their operations in a sanitary fashion.

Mr. ROSENTHAL. Those counts there in Items 4 and 5, what are they and what would it mean to an individual consuming those foods?

Dr. Lewis. The high counts of these organisms are only indicative of exposure of that food to conditions where contamination or growth of contaminants could occur. These organisms do not, themselves, necessarily prove the product is harmful.

Their presence suggests that there might have also been opportunities for disease-producing organisms to be introduced or to grow; therefore, they are indicators of the sanitary history of the product,

rough indicators though they be. Mr. Rosenthal. Mr. Myers?

Mr. Myers. Thank you, Mr. Chairman. Did I understand you a while ago to say that, say this meat or product has been contaminated with some of these germs, whatever they are; but can you cook it then and would it still be all right for consumption after it was cooked? If it was properly cooked, long enough and so forth?

Dr. Lewis. That would depend on the causative organism that is involved. Take the salmonella organisms, for example. Thorough

cooking-

Mr. Myers. What is that?

Dr. Lewis. The internal temperature of the food, at the coolest point, should reach roughly 160 to 165° F.

Mr. Myers. Then we shouldn't be eating rare steaks; should we?

Dr. Lewis. I must say I do.

[Laughter.]

Mr. Myers. Neither one of us is dead yet, so-

Dr. Lewis. The point is that much of this contamination is on the surface. It may be transferred from the gut or from some piece of equipment. I think there is a difference between eating meat from a great big chunk and from a small animal, even though both were cooked at a rare temperature. The likelihood of the contamination in the interior, where it is rarest, is less than it is on the surface. Dr. Decker reminds me that I won't eat rare poultry because I know there is a hazard. Trichinosis in pork is another example.

Mr. Myers. Dr. Decker didn't answer the question a while ago

about-

Dr. Decker. About would I want to consume the TV dinners? No. There is a definite indication that the conditions would allow growth of disease-producing germs, if present, and I wouldn't want to take the risk.

I would want to assume that they were present, and therefore, that

the food would be hazardous.

Mr. Myers. If they had been refrozen down to zero, would that

changethe Dr. Decker. Refrozen? Not necessarily, Mr. Myers. I think Dr. Lewis was going to get to that point. One group of disease-producing germs produces a toxic material that continues on. Refreezing may kill the germ, but it will not destroy the chemical agent that causes disease.

I wouldn't want to risk the chance that this kind of organism had

contaminated this food.