$$FeCO_3 + H^+ \rightarrow Fe^{+2} + HCO_3 - (19)$$

or (2) by the neutralization and dilution of an acidic mine water with an alkaline ground water or (3) by the neutralization of an acidic mine water by content with limestone and/or other basic materials.

The components of unaerated alkaline mine water include HCO_3 -, CO_3 =, CO_2 , $\mathrm{H}_2\mathrm{CO}_3$, Fe^{+2} . Alkaline water containing iron which has been aerated usually contains little or no iron in solution. Most of the iron present appears as a colloidal suspension.

C. Characteristics of Mine Water

1. <u>Iron Content</u> - The principal iron species (5) which are found in mine water are believed to be Fe^{+2} , Fe^{+3} , $Fe(OH)_2(s)$, and $Fe(OH)_3(s)$.

Fe⁺² is usually associated with the oxidation products of pyrite which have been leached from the mine by ground water. The principal soluble oxidation product is $FeSO_{l_1}$. However, $FeSO_{l_2}$ hydrolyses and oxidizes to form various hydroxides, some of which are also soluble. Fe^{+2} in mine water is also associated with $FeCO_3$. Natural ground water leaching such minerals as siderite will contain Fe^{+2} . It is believed the $FeCO_3$ dissociates and ionizes and is in equilibrium with Fe^{+2} , CO_3^- , HCO_3^- .

 ${\rm Fe}^{+3}$ in mine water occurs in solution under specific conditions. At low pH, <3, ${\rm Fe}^{+3}$ is in solution. At higher pH, ${\rm Fe}^{+3}$ will be found in solution only as part of complexes formed with organix chelates, phosphates, and other anions. In the absence of chelating agents, ${\rm Fe}^{+3}$ should not be found in significant quantities in solution in mine drainage above pH 3.

a. Solubility of Iron - The principal iron species, Fe $^{+2}$ and Fe $^{+3}$, form hydroxides which are insoluble. The solubility product (20), K_{sol} , for Fe(OH)₂ at 25 C in "slightly basic media" is 5.25 x 10 $^{-1}$. The distribution of soluble Fe $^{+2}$