and insoluble $\operatorname{Fe}(OH)_2$ at various pH levels is shown in Figure 1, where percent composition is plotted versus pH. Figure 1 was constructed according to methods described by Sillin.(22) The factor limiting concentration of Fe^{+2} in solution is the equilibrium concentration at any pH. Table 1 gives the distribution of the various forms in which Fe^{+2} occurs at various pH levels.

TABLE 1. EQUILIBRIUM COMPOSITION FOR THE SYSTEM Fe⁺² - Fe(OH)₂ AT VARIOUS pH VALUES, EXPRESSED AS FRACTION OF TOTAL Fe⁺² FRESENT

<u>рН</u> 5.0	Fe ⁺²	Fe (OH)	2 .000005	Fe(OH)2 a	FeOH+
6.0	.903	.047	.047	.000002	.002
6.5	.485	. 253	.255	.00002	.0068
7.0	.087	.454	.457	.00002	.0019
7.5	.0094	.493	.496	.00002	.0013
8.0	.00095	.496	.499	.00002	.0002
9.0	.00001	.498	.501	.00002	.00002

s = solid
1 = FeOH⁺ + OH⁻
$$\rightarrow$$
 Fe(OH)₂
2 = Fe⁺² + 2 OH \rightarrow Fe(OH)₂

From these data it appears that about 50 percent of the $Fe(OH)_2$ formed at any pH is due to the intermediate reaction $FeOH^+$ + OH^- while the remaining 50 percent is formed directly from Fe^{+2} + 2 OH^- .

Fe⁺³ is also found in mine water and as described earlier, is soluble only under special conditions. Like Fe⁺², the solubility can be determined from a consideration of the various equilibria involved. Figure 2 is a distribution diagram