TABLE 3. SOLUBILITY OF Fe(OH)₂ AND Fe(OH)₃ FROM K_{sol} AT 25 C ${\rm K_{sol}\ Fe(OH)_2=5.25\ x\ 10^{-14};\ K_{sol}\ Fe(OH)_3=1\ x\ 10^{-38}\ ({\rm Also\ 10^{-40}\ is\ reported.})}$

рН	Fe ⁺² , ppm	Fe ⁺³ , ppm
1		56000
2		560
3		0.56
4		0.00056
5		
6	29400	
7 .	294	
8	2.94	
9	0.0294	

b. Oxidation of Ferrous Iron - Weiss studied the mechanism of the ferrous oxidation and concluded that the reaction proceeded according to the following mechanism:

The above reactions are not balanced with respect to ${\mbox{H}}^+$ and, therefore, do not show the possible dependence of reaction rate on this variable.

Huffman and Davidson, 1956 (23) found that "the reaction $\text{4 Fe}^{\text{II}} + \text{O}_2 \rightarrow \text{4 Fe}^{\text{III}} + \text{2 H2O, at 140-180° in 1 F H2SO4,}$