proceeds by simultaneous bimolecular and termolecular reaction paths:

$$-d(Fe^{II})/dt = k_b(Fe^{II})P_{O2} + k_t(Fe^{II})^2P_{O2}.$$

At 159°, $k_b = 1.93 \times 10^{-3}$ atm ⁻¹ sec. ⁻¹, $k_t = 1.60 \times 10^{-3}$ M⁻¹ atm ⁻¹ sec ⁻¹; the respective activation energies were measured as 13.4 ($^{\pm}2$) and 16.3 ($^{\pm}2$) kcal. At 30.5°, only the termolecular path is observed (contrary to the predictions of the high temperature activation energies);

$$k_t = 2.78 \times 10^{-6} M^{-1} atm^{-1} (1 F H_2 SO_4).$$

The variation of rate with SO4- indicates independent reactions,

$$2 \text{ Fe}^{++} + O_2 \xrightarrow{(1/2)k_u} 2 \text{ Fe}^{III} + H_2O_2$$
, and

$$FeSO_{l_1} + Fe^{++} + O_2 \xrightarrow{(1/2)k_S} 2 Fe^{III} + H_2O_2$$
, where

$$\rm k_u$$
 = 1.4 x 10⁻⁶ $\rm k_s$ = 3.1 x 10⁻⁵ M⁻¹ atm ⁻¹ sec ⁻¹, and

$$K_{\text{FeSO}_4} = 1.1 \text{ M}^{-1}.$$

The reaction rate increases a small amount with increasing pH. Catalysis by Cu⁺⁺ follows the rate law $-d(Fe^{++})/dt = 4k_0(Fe^{II})(Cu^{++})$ and is probably initiated by

$$Fe^{II} + Cu^{++} \xrightarrow{k_9} Fe^{III} + Cu^{I}$$
.

In 0.23 F H_2SO_4 , 0.35 F Na_2SO_4 , $k_9 = 1.9 \times 10^{-3} M^{-1} sec -1$.

The rate-determining step for the bimolecular path is presumably either:

(la)Fe^{II} + O₂
$$\rightarrow$$
 Fe^{III} + HO₂, or
(lb)Fe^{II} + O₂ \rightarrow Fe^{IV} + H₂O₂;

for the termolecular path it is 2 Fe^{II} + O_2 \rightarrow 2 Fe^{III} + H_2O_2 .

There is evidence that the bimolecular path, the termolecular path and the Cu^{++} catalyzed path are all accelerated by complexing anions, X, and to an extent depending on the affinity of X for Fe^{+++} . Furthermore, strong complexers favor the occurrence of the bimolecular path."