At a given pH, the rate of reaction decreases in the series pyrophosphate, phosphate, chloride, sulfate, and perchlorate.

Cher and Davidson, 1955 (24) examined the kinetics of the Fe $^{+2}$ - O₂ system in phosphoric acid solution. They observed that the rate law for the Fe $^{+2}$, O₂ reaction in H₃PO₄, NaH₂PO₄ solutions (1.0 - 1.1 M) is:

"-d(Fe⁺⁺)/dt = k(Fe⁺⁺)
$$P_{02}$$
 (H_2P_{04} -)², where
k = 4.5 (\pm 0.3) atm ⁻¹ mole ⁻² liter² hr ⁻¹ at 30°.

The activation energy is 20 (\pm 2) kcal. There is some heterogeneous reaction on a glass wool surface, but it is believed that the above rate data apply to the homogeneous reaction. There is no inhibition by added Fe⁺⁺⁺. A one-electron reaction mechanism with the rate-determining step, Fe⁺⁺ + $O_2 \rightarrow Fe^{+++} + HO_2$, is consistent with the results. The marked catalytic effect of added Cu^{++} can be explained by the reactions (unbalanced with respect to H⁺):

$$HO_2 + Fe^{++} \xrightarrow{k_3} Fe^{+++} + H_2O_2.$$

At 30°,
$$\mu$$
 = 1 M, (H_2PO_{14}) = 0.434 F, $(H_2PO_{14}^-)$ = 0.302 F, P_{02} = 150 mm, R_7 = 1.0 x 10³ M⁻¹ hr ⁻¹, R_9/R_8 = 5.1 x 10⁻² M atm ⁻¹, and R_{10}/R_3 = 23.

Stumm and Lee, 1961 (25) report that the rate of ferrous iron in bicarbonate solutions follows the law -d $\left[\text{Fe}^{\text{II}}\right]$ /dt = k $\left[\text{Fe}^{\text{II}}\right]$ P_{O2} $\left[\text{OH}^{-}\right]$ ².

Thus, the oxidation of ferrous iron is directly related to the available oxygen, the presence of complexing anions, and the concentration of various catalytic materials, such as Cu^{+2} .

Lamb and Elder, 1931 (26) also report catalytic activity due to platinum black and charcoal.