<u>C.</u> Potassium Permanganate Systems:--The chemical reactions involved in the treatment of Fe⁺² with potassium permanganate are:

$$Fe^{+2} \xrightarrow{} Fe^{+3} + e$$
 $MnO_4^- + 2H_2O + 3e \xrightarrow{} < MnO_2 + 4OH^-$

The use of KMnO4 has been evaluated experimentally by Barnes & Tucker Coal Co., 1966 (48) for treatment 1.44 x 10⁶ gpd of alkaline water being discharged from the Lancashire No. 15 mine. The iron content of the water averages 20 ppm with a fluctuation of 1.6-64 ppm. The permanganate is being evaluated as a chemical oxidant for Fe⁺². Reported cost of the KMnO4 is 25-40 cents/1b. At 20 ppm iron, the reagent cost/thousand gallons is reported at \$0.026. The maximum possible reagent cost at 64 ppm Fe is \$0.083/M gal. This is equivalent to \$122.00 per day. Capital cost of the complete system has not been reported, however, the total cost includes cost of:

- 1. KMnO4 storage tank.
- 2. 20 x 20 ft, 14,000 gal capacity mixing tank.
- 3. $6 \times 40 \times 150$ ft, 270,000 gal capacity settling pond.
- 4. 40 x 40 ft, 1,150 sq ft filtering area, sand filter.
- 5. Auxiliary pumps, meters, piping.

Construction of the experimental unit has been completed. In addition to the above-reported equipment, two large holding ponds have also been added. Results of the initial experiences with permanganate have not been published.

D. Sodium Hydroxide Neutralization System: -- The reactions of NaOH with mine water constituents are basically identical with the $Ca(OH)_e$ reactions. NaOH is a much stronger base than $Ca(OH)_2$ and has the advantage of being added as a liquid rather