directly almost on a real-time basis. Practically everyone knows and can measure the tremendous productivity of a NOTS, China Lake. Its output goes directly into the military inventory. On the other hand, the output or product of a research laboratory is much more difficult to assess. Many years may pass before the utilization of new science or technology can be measured meaningfully.

The principal method used for Defense laboratories is peer rating or evaluation, either by in-house people, those on the outside, or combinations of both. This is only part of the story, however. Program evaluation in terms of need, priority, technical content, and similar factors probably have a greater bearing upon the appraisal of laboratories than direct institutional evaluation. Through program evaluation, one usually makes decisions on resource allocation which ultimately determine the future of that laboratory responsible for the program execution.

TAB A—QUESTION No. 2—SAMPLE CPE FORMAT USED FOR TRAINING EVALUATION

EVALUATION OF THE EDEN MISSILE CONTRACT

The following forms constitute a possible solution to your classroom project. Schedule and technical performance parameters most indicative of total contractual performance were selected. Normally, these criteria would have been listed on the evaluation plan.

FORM 1441—Contract Brief

This form identifies the contract being evaluated and describes in broad terms the kind of development or production being purchased, the technological and state-of-the-art problems involved, and the respective responsibilities of the contractor and the Government for furnishing major systems and equipment. On the reverse of this form is space for extended comments. No continuation sheet for the Contract Brief is permitted.

FORM 1446-1—Technical Performance

This is used to list the items selected for technical evaluation. The original contract commitment, adjusted by modifications and pending changes, but excluding performance losses for which the contractor is responsible, is displayed so as to show the "net" contractual performance requirements. Actual performance is then stated, and the variance between requirement and accomplishment is computed.

Known reasons for significant variances should be briefly recorded on the reverse of the form, as well as other entries that require collateral explanation. If the significance of the parameters selected is not self-evident, it should be briefly explained there. Report no more than 30 technical parameters (15 are usually enough).

FORM 1446-2—Schedule Performance

This form is used to list the items selected for schedule evaluation. The original commitment, adjusted through contract modifications and other changes for which the contractor is not responsible, is compared with the actual delivery or completion date, and the resulting variance is recorded.

Schedule goals are expressed as the number of months (Computed by dividing the number of days by 30) required to deliver an item or complete an event and are computed from the starting date to the date of actual accomplishment. Residual variances are then expressed as the number of months late or early. These figures should be rounded to the nearest month unless such a variation is critical to the project.

Known reasons for variance should be explained on the reverse of the form, as well as other entries that require collateral explanation. If the significance of the parameters selected is not self-evident, it should be briefly described there. Report no more than 30 schedule items or milestone events (15 are usually sufficient).

Form 1446-3—Cost Performance

This form is used for recording the cost performance of a contractor at the time of evaluation.

Since cost data are recorded in the aggregate, specific entries may require collateral explanation or enlargement to insure an objective evaluation. For example, when performance, schedule and cost incentives in fixed-price-incentive