we are planning to do to prevent these blackouts, and to keep our system operating on an interconnected, integrated basis in the State of Florida, not depending on long transmission lines that go to the north to the sources of power there. I have the report here and would like to offer it as part of this record, since I think it is pertinent. I want to offer that for the record. It is the report made to the previous chairman of this committee with respect to reliability.

Mr. Macdonald. Without objection it is so ordered.

(The information referred to follows:)

FLORIDA POWER & LIGHT Co., Miami, Fla., June 14, 1966.

Hon. Walter Rogers,
Chairman, Special Subcommittee To Investigate Power Failures, House Committee on Interstate and Foreign Commerce, Rayburn House Office Building, Washington. D.C.

DEAR MR. ROGERS: We are happy to cooperate with you and your Committee by supplying answers to the questions included in your letter of April 19, 1966 to Mr. McGregor Smith, Chairman of the Board, with respect to the Northeast power failure of November 9 and 10, 1965.

Peninsular Florida is served by five principal suppliers. The group comprises Florida Power Corporation, Florida Power & Light Company, Tampa Electric Company, and the municipal systems of Jacksonville and Orlando. These five suppliers are strongly interconnected and comprise what is known as the Florida operating group.

Immediately following the Northeast power failure, the Florida Public Service Commission, which regulates electric utilities in Florida, requested that a study be made to determine the adequacy of safeguards in Florida that maintain continuity of electric service and guard against a power failure such as occurred in the Northeast. The five principal suppliers made a joint report to the Florida Public Service Commission. I believe this report is pertinent to the studies which your Committee is making and I am, therefore, attaching a copy.

An informal committee called the Florida Operating Committee was established in January, 1959 for coordinating mutual problems relating to interconnected operation of the five systems. This committee consists of operating and engineering people from each system, and it meets bi-monthly or more frequently, depending on need. Notwithstanding the fact that each member operates its own individual system in the most economical manner consistent with its individual requirements and policies, there is a strong recognition of the need to coordinate operating matters. This is reflected by the excellent communication services linking the five dispatching offices, by the daily exchange of operating information, by the coordination of spinning reserves, by the coordination of overhaul schedules, and by stability studies and long range studies.

These suppliers, surrounded on three sides by water, subjected to hurricanes and the highest incidence of lightning in the nation, undertake to stand on their own feet and provide their own reserves. The result has been that the power supply for peninsular Florida has been planned to meet increasing load with ample reserves for all situations, and to take care of emergencies without out-of-state assistance.

The population of the State is distributed into certain natural load areas which have set the pattern for transmission systems development and for the location of power sources. Power is generated near population centers and is not transmitted over long distances.

The load areas of the Florida group are interconnected with each other by more than sufficient transmission capability to support each area for any credible forced shutdown of generating capability. This transmission system has never been tested to its full capability. The worst test it has had occurred in January of 1965 when Florida Power Corporation had a forced shutdown of its entire largest power plant, (480 mw) which, at that time, represented about one-half of that company's load. A few weeks later, the Tampa Electric Company experienced a similar situation when it lost generation supplying more than half of its system load. In each of these cases no internal transmission lines became overloaded and no customer service was interrupted, except for one interruptible industrial customer in the first case.